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Abstract
Molecular dynamics simulations have been performed to investigate the early-
time dynamic behaviour of gas–liquid phase separation in two dimensions by
using the evolution of the potential energy. It is found that the average potential
energy per particle u(t) shows a good linear relationship with the average
number of nearest-neighbour particles nnn(t) after a brief time. The results
also show that u(t) follows a positive power law in time in the early stage of
phase separation. The excess energy per particle u(t) − u∞ ∝ t−1/2 is also
confirmed in the late stage. These results suggest that u(t) may be considered
as a parameter describing the entire phase separation process in gas–liquid
systems.

1. Introduction

The phenomenon of phase separation has been extensively studied both experimentally and
theoretically, in a wide variety of systems, including simple fluids, binary fluids, binary alloys,
and magnetic systems [1–12]. It has been shown that in the late stage of phase separation the
typical domain size R(t) grows as a power law with time t [13]:

R(t) ∼ tα. (1)

The exponent α is believed to be universal, depending on the growth mechanism rather than
details of the particular system.

Lifshitz and Slyozov have analysed the dynamics of aggregation of solutes from super-
saturated dilute solutions using a scaling concept [14]. They found that the late-time behaviour
of the growth law of the solute domain is the scaling R(t) ∼ t1/3. Recently, by using
dimensional analysis, Lookman et al [15] have found that there are three dynamic regimes:
diffusive, viscous, and inertial. In the diffusive regime, the diffusion order parameter plays
a main role and R(t) ∼ t1/3. In the viscous regime, hydrodynamics becomes relevant
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and R(t) ∼ t . In the inertial regime, inertial effects dominate over the viscous forces and
R(t) ∼ t2/3.

Numerical studies have also been made of phase separation by Monte Carlo simulation,
lattice Boltzmann simulation, and solving phenomenological equations [16–20]. It is found
that the growth exponent α is equal to 1/2 for the case of non-conserved order parameter and
1/3 for the case of conserved order parameter. In the late stage of phase separation, the temporal
patterns are statistically equivalent to each other if they are scaled by the proper time-dependent
characteristic length. The influences of density and noise on phase separation dynamics have
also been studied by our group recently using molecular dynamics (MD) simulations [21]. The
simulations indicate that in the late stage of gas–liquid phase separation, the mean cluster size
R(t) ∼ tα with α = 1/3 (for low density and high temperature) or 1/2 (for the rest) [21]. Koch
et al [22] have studied the influence of the ensemble on gas–liquid phase separation in a two-
dimensional (2D) Lennard-Jones (LJ) fluid at the critical density ρc. They have found that the
characteristic length scale of the system grows in proportion to t1/2 for the isothermal simul-
ation and to t1/3 for the adiabatic one. Yamamoto and Nakanishi [23] also studied the dynamics
of gas–liquid phase separation in the two- and three-dimensional LJ fluid systems with critical
density by means of constant-temperature MD. They found that the growth exponent is 1/2 and
is independent of the system dimensionality. Another important finding from MD simulation
is that the domain pattern undergoing phase separation shows a fractal nature under certain
conditions [24, 25]. It has also been found that the fractal dimension of the domain wall
increases with rising temperature [23]. Such fractal behaviour was also predicted analytically
by Klein [26] using scaling in the early stage of the spinodal decomposition. MD simulation
has the advantage that both static and dynamic correlation and hydrodynamic effects are all
taken into consideration. It has also been carried out for the binary fluid mixture [27–32].

However, most of the works mentioned above considered the late-time behaviours of
phase separation, and they were focused on the growth of the characteristic length. The early-
time behaviours of phase separation have received rather little attention as far as we are aware,
especially for an unstable fluid which still presents a major unsolved problem in the dynamics of
first-order phase separation [1, 2]. In this paper, we aimed to obtain some deeper understanding
of the phase separation process by studying the early-time behaviours of gas–liquid separation.
The dynamic behaviour of systems is characterized by using the average potential energy per
particle. The relationship between the potential energy and pair distribution function, and the
evolution of the potential energy with time were obtained. The early-time dynamic behaviours
of gas–liquid phase separation were first studied, and the long-time behaviours were also
confirmed.

2. Model and method

We have simulated the spinodal decomposition and cluster growth of a 2D simple fluid by
means of molecular dynamics. The system consists of N = 5000 particles with mass m. The
interaction between two particles separated by distance r is described using the Lennard-Jones
potential

φ(r) = 4ε

[(
σ

r

)12

−
(
σ

r

)6
]

(2)

where ε denotes the potential depth and σ is the diameter of a particle. Reduced units are
used. ε, σ , ε/kB , and τ =

√
mσ 2/4ε are chosen as the energy, length, temperature, and time

units, respectively. The Boltzmann constant kB and atomic mass m are set to 1. The MD time
step (MDs) was taken as 0.01, which is equal to about 0.01 ps for an argon-like fluid. 20 000



Early dynamics of the potential energy evolution in 2D gas–liquid phase separation 7345

time steps were taken in a MD run, to reach the late stage of phase separation. The MD runs
were performed in the constant-NVT (constant number of particles, volume, and temperature)
ensemble, where the temperature is fixed by a Nosé–Hoover thermostat [33]. The periodic
boundary condition was used as usual. The cut-off radius was set at rcut = 3.0.

For 2D LJ fluids, the critical density ρc and critical temperature Tc are 0.325 and 0.56,
respectively [34]. The MD simulations were carried out by the instantaneous critical quenching
of homogeneous systems. That is, the system was initially equilibrated at the critical density
ρ = 0.325 and temperature T = 5.0, corresponding to the single-phase region in the phase
diagram of the 2D LJ fluid. Then the system was quenched into the two-phase (spinodal)
region by the instantaneous velocity scaling of all particles, while the density remained
unchanged. To remove the fluctuation, at least ten independent runs were performed to average
the calculated results.

In simulations, the definition of a cluster is almost the same as that used by Ten Wolde and
Frenkel [5]. It can be given briefly as follows. A distinction is first made between particles that
have a liquid-like environment and those that have a vapour-like environment. Two particles
are defined as the nearest neighbours to each other if the distance between them is less than
rc, where rc = 1.6 corresponds to the first minimum in the radial distribution function of the
systems. The particles which have more than two nearest neighbours are considered to be
liquid-like. Thus any two liquid-like particles which are separated by a distance less than rc
belong to the same liquid cluster.

3. Results and discussion

3.1. The relation between structure and potential energy

The pair distribution function g(r) is the probability of finding a pair of particles at a distance
r . Usually, g(r) is used to characterize the structure of random systems. On the other hand, the
average potential energy per particle u is determined by the interactions among the particles
composing the system, so u depends upon the structure of the system. To find the relationship
between u and g, we investigated the variation of g and u with time t in the gas–liquid phase
separation process by MD simulations. We are interested in the liquid-like clusters which are
generated during phase separation. The average size of the clusters can to some extent be
characterized by the average number of nearest-neighbour particles, nnn, which is the number
of particles within a distance corresponding to the first minimum of g(r). With the advance of
time, the clusters grow and nnn rises. As nnn increases, more particles aggregate together, so
u reduces. Our MD simulations have shown that u and nnn behave similarly with the variation
of time. Figure 1(a) presents the evolution of u(t) and nnn(t) with time t . Figure 1(b) plots
the relation between u(t) and nnn(t).

It can been seen from figure 1(b) that a very good linear relation between u(t) and nnn(t)

is obtained except in about the first 40 MDs. The linear relation between u(t) and nnn(t) can
be deduced as follows. From the pair distribution function g(r, t), the average potential energy
per particle u(t) can be expressed as

u(t) = πρ

∫ ∞

0
φ(r)g(r, t)r dr = πρ

∫ rcut

0
φ(r)g(r, t)r dr (3)

and the average number of nearest-neighbour particles nnn(t) as

nnn(t) = 2πρ
∫ r1

0
g(r, t)r dr (4)

where ρ = ρc is the mean density of the system and r1 corresponds to the first minimum in
the pdf g(r).
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Figure 1. Plots at phase separation temperature T = 0.45 and critical density ρc = 0.325: (a) the
evolution of the average potential energy per particle u (solid line) and the average number of
nearest-neighbour particles nnn (dashed line) with time t ; (b) the dependence of u(t) on nnn(t).

Equations (3) and (4) can be combined into

u(t) = k(t)nnn(t) (5a)

where

k(t) =
(∫ rcut

0
φ(r)g(r, t)r dr

)/(
2

∫ r1

0
g(r, t) dr

)
. (5b)

After a brief time, the separation process reaches a situation in which small liquid clusters are
formed whose internal structure is already equivalent to that of the equilibrium liquids. This
can also be indicated indirectly by the invariance of the positions of liquid peaks in g(r, t). In
this case, the time- and distance-dependent g(r, t) can be expressed as [1]

g(r, t) = Gmax(t)g̃(r) (6)

where Gmax(t) is a function of time only and g̃(r) is a function of distance. Gmax(t) represents
the magnitude factor of g(r, t) concerned with the average cluster size of the system, while
g̃(r) denotes the shape factor relating to the internal structure of liquid-like clusters. Inserting
equation (6) into equation (5b), we obtain the time-independent

k0 =
(∫ rcut

0
φ(r)g̃(r)r dr

)/(
2

∫ r1

0
g̃(r) dr

)
. (7)

Employing equation (7), equation (5a) can be rewritten as

u(t) = k0nnn(t). (8)

It just describes the behaviour of u(t) with nnn(t) in figure 1(b). By taking any g(r, t) for
t > 40 MDs as g̃(r), we calculate the value of k0 = −0.47 ± 0.02, which is in agreement with
the simulation results in figure 1(b).
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3.2. Evolution of potential energy with time

Since the evolution of the average potential energy per particleu(t) reflects the growth of liquid-
like clusters in the separation process, one may investigate the gas–liquid phase separation
process, especially in the early times, using u(t) instead of the direct structure description.
Figure 2 shows the variation of the average potential energy per particle u(t) and the average
excess energy per particle u(t) − u∞ with time in a log–log plot at quenched temperature
T = 0.45, respectively. u∞ � −1.81 is the average potential energy per particle of coexisting
phases at equilibrium, where the phases are separated by a flat interface.
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Figure 2. For the same conditions as for figure 1: (a) the evolution of the average potential energy
per particle u(t) versus time t in a log–log plot (the solid line is to guide the eye); (b) the dependence
of the excess internal energy u(t) − u∞ on time in a log–log plot.

Figure 2(a) shows that after a microscopic time tmic (40 MDs), u(t) follows a positive
power law in the early stage of phase separation (40 < t < 1000 MDs), i.e.

u(t) ∝ t θ (9)

and figure 2(b) indicates that there exists a negative power relation between the excess energy
and time in the late stages (t > 5000 MDs), i.e.

u(t) − u∞ ∝ t−x. (10)

The intermediate range (1000 < t < 5000 MDs) is the crossover region between the early and
late stages.
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The result of equation (10) is consistent with those in previous works [7, 11], i.e. x in
equation (10) is the same as α in R(t) ∼ tα , which has been demonstrated and explained
on the basis of the cluster dynamics in the late stage of phase separation [1, 11]. Therefore,
in the following we will discuss the early-time behaviours of u(t) on the basis of cluster
dynamics only.

We calculated the total potential energy Ul of a cluster consisting of l particles at different
times. The cluster potential energy Ul as a function of cluster size l is shown in figure 3 in
a log–log plot for an extensive time range from 200 to 20 000 MDs. It can be found from
figure 3 that Ul approximately follows a power law in the cluster size l:

Ul = Alβ. (11)

where β is an universal exponent. We obtained β = 1.13 ± 0.02 from figure 3. A is a pre-
exponential factor, which depends on the temperature of phase separation but does not depend
on the time. From figure 3 we obtained A = 0.65 ± 0.06.
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Figure 3. For the same conditions as for figure 1: the total potential energyUl of a cluster consisting
of l particles as a function of cluster size l in a log–log plot in an extensive time region from 200
to 20 000 MDs.

To establish in which time region equation (11) is suitable for the cluster description of
phase separation, we examined the relative error δU/U of the total potential energy of the
system between the MD simulation and equation (11):

δU

U
(t) =

∣∣∣∣∣
(∑

l

Ulnl(t) −
∑
l

UMD
l nl(t)

)/(∑
l

UMD
l nl(t)

)∣∣∣∣∣ (12)

where nl(t) is the number of clusters with l particles at time t . We found that δU/U is
very small in the early stage (δU/U < 1%). As time increases, δU/U becomes larger and
larger, and reaches 15% after 5000 MDs. It follows from this that equation (11) describes
the behaviour of the clusters dynamics accurately in the early stage of phase separation, but
generates a large error in the late stage.

For the systems undergoing first-order phase transitions, the dynamical theory of cluster
formation has been developed by Binder et al [1]. A general kinetic equation for nl(t) has
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been obtained [1]:

∂nl(t)

∂t
= ∂

∂l

(
Rlnl

∂

∂l

nl(t)

nl

)
+

1

2

∫ l

lc

dl′ W(l − l′, l′)
nl′(t)

nl′

nl−l′(t)

nl−l′

− nl(t)

nl

∫ ∞

lc

dl′ W(l, l′)
nl′(t)

nl′
(13)

where the kinetic coefficient Rl is

Rl = 1

nl

lc∑
l′=1

(l′)2W(l − l′). (14)

nl is the equilibrium cluster distribution, W(l, l′) is a rate relating to clusters with size l and l′,
and lc is a cut-off such that the volume Vlc associated with the correlation length of the system
ξ is Vlc ∼ ξd . The first term in equation (13) is the Becker–Döring nucleation equation [1].
The last two terms correspond to the standard coagulation equation [1].

To obtain the cluster distribution in the early stage of phase separation, we introduce an
approximate solution of equation (13) which yields the phenomenological Binder–Stauffer
(BS) theory of cluster growth at intermediate times [1]. Their basic assumption is that there
exists an intermediate time domain in which clusters of intermediate size diffuse without
changing size, until eventually two such clusters coalesce. This coagulation is the BS growth
mechanism and results from the diffusion of clusters. The clusters are considered to be
diffusing, free Brownian particles. Based on the assumptions above, the BS theory can be
derived from the basic equation (13) as follows. We neglect the evaporation–condensation
term in equation (13) (the first term) and keep the coagulation terms. A scaling form for the
rate W(l, l′) is then assumed for the coagulation terms in equation (13):

W(l, l′) = nlnl′ l
′vW̃ (l/ l′). (15)

With this form of W and the conservation law
∑

l nl(t)l = constant, the equation for nl(t) can
be solved by the following scaling form [1]:

nl(t) = t zñ(ξ) (16)

with

y = −z/2 = (1 − v)−1 (17)

where ξ = lt−y and ñ(ξ) is an appropriate scaling function. The exponent v is obtained
according to the diffusion of the clusters. y has at least three different values: d/(d + 1),
d/(d + 2), and d/(d + 3), corresponding to three different diffusion mechanisms [1]. Note
that the scaling solution, equation (16), was originally proposed for the late stage of phase
separation of the Lifshitz–Slyozov (LS) theory [1]. However, in contrast to the BS theory, the
LS theory results from neglecting the coagulation events (the last two terms) in equation (13)
and also neglecting the diffusion part (∂2/∂l2) of the evaporation–condensation term (the
first term). Therefore, in the LS theory, the exponent y = d/3 is universal (independent of
temperature, etc) [1].

Now we use the BS theory to discuss our simulation results at intermediate times
(40 < t < 1000 MDs). Combining equations (11) and (16), the average potential u(t) is
expressed as

u(t) = 1

N

∑
l

Ulnl(t) = t z+y+βy 1

N

∑
ξ

Aξβñ(ξ). (18)

Substituting the relation z = −2y into equation (18), we obtain

u(t) = A′t (β−1)y (19)
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where A′ = ∑
ξ Aξβñ(ξ)/N . Equation (19) describes the evolution of the average potential

energy per particle with time in the early stage of phase separation (see figure 2(a)). Comparing
equations (9) and (19), we obtain

θ = (β − 1)y. (20)

Since y is not universal in the BS mechanism [1], one can except θ to depend on the phase
separation temperature. Figure 4 demonstrates that for the simulations carried out at different
quenched temperatures this is the case. From figure 4, we obtain θ � 0.195, 0.156, and 0.130
for quenched temperatures T = 0.40, 0.45, and 0.50, respectively. Substituting these values
of θ into equation (20), we obtain y � 1.5, 1.2, and 1.0 for quenched temperatures T = 0.40,
0.45, and 0.50, respectively.

100 1000 10000

T=0.40
    0.45
    0.50

2.0

1.0
0.9

t (MDs)

-u
(t

)

 
 
 

Figure 4. The evolution of the average potential energy per particle u(t) with time t in a log–log
plot at different quenched temperatures. The crossover times are indicated by arrows.

It can be seen that our simulation results for y are different to those obtained from the BS
theory. This may result from the BS theory only being suitable for describing systems with
nearest-neighbouring interactions at low temperatures; this limitation is imposed by its basic
assumptions [1]. In the present system the interaction is not limited to the nearest neighbours
and has a more extensive range. That is, during the diffusion a cluster has interactions with its
surrounding clusters and the clusters cannot be regarded as free Brownian particles. Therefore,
the value of v in the present systems is different from that in the BS theory. In addition,
the probability of sticking of two neighbouring clusters P(l, l′) is always less than 1.0, and
increases with decreasing temperature. Therefore, the rate W(l, l′) should be dependent not
only on the diffusion of clusters (reflected by v), but also on the probability P(l, l′), i.e.

W(l, l′) = nlnl′ l
′vP (l, l′)W̃ (l/ l′). (21)

Accordingly, although the form of the solution equation (16) does not change, two basic
assumptions in the BS mechanism are no longer satisfied in the present systems, so the values
of y obtained from the present simulations are very different from those obtained from the BS
theory. In the following, we discuss the dependence of our simulation results on the phase
separation conditions.

With the phase separation temperature decreasing, the influence of thermal fluctuation
becomes small, and the movement of clusters is more directional because of the long-range
interaction between clusters. Consequently, the average distance over which clusters diffuse
before coalescing becomes smaller and the exponent v becomes larger [1]. Moreover, the
sticking probability P(l, l′) increases with decreasing temperature. Therefore, the exponent
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y, which reflects the cluster growth velocity, increases with reducing temperature. This is
qualitatively consistent with our simulation results.

When the temperature is sufficiently low, the sticking probability P(l, l′) approximates
to 1.0, and equation (21) reduces to equation (15). Since the thermal fluctuations are very
small at low temperatures, the movement of clusters is governed by the interactions between
clusters. The interactions mainly result from the surface particles of clusters, so the interactions
are approximately proportional to the surface area of the clusters. Therefore, we may make
the single assumption that the rate W is proportional to the surface area of the clusters S,
i.e. W ∝ S ∼ l1/2, so v = 1/2. Combining this with equation (17), we obtain y = 2.0. That
is, the exponent y tends to 2.0 with decreasing temperature, which is in agreement with the
present simulation results for y.

From figure 4 we can also see that the curves have similar behaviours with time. For each
quenched temperature, there exists a crossover time tξ . For tmic < t < tξ , u(t) is expressed by
using equation (9), and for t 
 tξ , u(t) can be expected to follow equation (10).

In addition, in order to check the effect of the initial conditions on simulation results, we
elevated the initial equilibrium temperatures (T = 6.0, 7.0, and 8.0) of the simulation system.
The results obtained are almost the same. To examine the effect of finite size on simulations,
we took three systems with N = 2000, 3000, and 4000, and found that the simulation results
are insensitive to the size of the systems.

4. Conclusions

This work shows that the average potential energy per particle u(t) can be used to describe the
process of gas–liquid phase separation. The results also show that at early times the potential
energy per particle follows a positive power law of time after a microscopic time. Unlike in the
late stage, the power-law exponent is not universal and is dependent on the phase separation
temperature. On the basis of cluster dynamics, we explain the power-law behaviour in the
early stage and discuss the dependence of the exponent on the temperature.
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